
Lecture 2

FUNDAMENTALS OF OBJECT-ORIENTED PROGRAMMING

OO Programming Concepts

data field 1

method n

data field n

method 1

An object

...

...

State

Behavior

Data Field

radius = 5

Method

findArea

A Circle object

Class and Objects

circle1: Circle

radius = 2

new Circle()

circlen: Circle

radius = 5

new Circle()

...

UML Graphical notation for classes

UML Graphical notation

for objects

Circle

radius: double

findArea(): double

UML Graphical notation for fields

UML Graphical notation for methods

Class declaration

class Circle {

double radius = 1.0;

double findArea(){

return radius * radius * 3.14159;

}

}

Declaring Object Reference Variables

ClassName objectReference;

Example:

Circle myCircle;

Creating objects

objectReference = new ClassName();

Example:

myCircle = new Circle();

The object reference is assigned to the object reference variable.

DECLARING / CREATING OBJECTS

ClassName objectReference = new ClassName();

Example:

Circle myCircle = new Circle();

Differences between variables of

primitive Data types and object types

1

c: Circle

radius = 1

Primitive type int i = 1 i

Object type Circle c c reference

Created using

new Circle()

Copying Variables of Primitive Data

Types and Object Types

1

c1: Circle

radius = 5

Primitive type assignment

i = j

Before:

i

2j

2

After:

i

2j

Object type assignment

c1 = c2

Before:

c1

c2

After:

c1

c2

c2: Circle

radius = 9

Modifiers Static vs. Instance Members

 By default, members are per instance

 Each instance gets its own fields

 Methods apply to a specific instance

 Static members are per type

 Static methods can’t access instance data

 No this variable in static methods

Static methods

 Static methods are called by using the class name, not the instance of the class.

 The Console class and its Read and Write methods are an example of static methods. The following code example
calls Console.WriteLine and Console.ReadKey methods without creating an instance of the Console class.

class Program

{

public static void withoutObj()

{

Console.WriteLine("Hello");

}

static void Main()

{

Program. withoutObj();

Console.ReadKey();

}

}

Access modifiers

 Access modifiers specify who can use a type or a member

 Access modifiers control encapsulation

 Class members can be public, private, protected, internal, or protected

internal

 Struct members can be public, private or internal

Access modifiers

Access defaults

 You should always explicitly mark what access you
want.

 Class definitions default to internal.

 Member fields, methods and events default to private
for classes

