
Lecture 2

FUNDAMENTALS OF OBJECT-ORIENTED PROGRAMMING



OO Programming Concepts
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Class and Objects
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Class declaration

class Circle { 

double radius = 1.0;

double findArea(){

return radius * radius * 3.14159; 

}

}



Declaring Object Reference Variables

ClassName objectReference;

Example:

Circle myCircle;



Creating objects

objectReference = new ClassName();

Example:

myCircle = new Circle();

The object reference is assigned to the object reference variable.



DECLARING / CREATING OBJECTS

ClassName objectReference = new ClassName();

Example:

Circle myCircle = new Circle();



Differences between variables of 

primitive Data types and object types
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Copying Variables of Primitive Data 

Types and Object Types
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Modifiers Static vs. Instance Members

 By default, members are per instance

 Each instance gets its own fields

 Methods apply to a specific instance

 Static members are per type

 Static methods can’t access instance data

 No this variable in static methods



Static methods

 Static methods are called by using the class name, not the instance of the class.

 The Console class and its Read and Write methods are an example of static methods. The following code example 
calls Console.WriteLine and Console.ReadKey methods without creating an instance of the Console class.

class Program

{

public static void withoutObj()

{

Console.WriteLine("Hello");

}

static void Main()

{

Program. withoutObj();

Console.ReadKey();

}

}



Access modifiers

 Access modifiers specify who can use a type or a member

 Access modifiers control encapsulation

 Class members can be public, private, protected, internal, or protected 

internal

 Struct members can be public, private or internal



Access modifiers



Access defaults

 You should always explicitly mark what access you 
want.

 Class definitions default to internal.

 Member fields, methods and events default to private 
for classes


